Is Arithmetic Consistent?

GRAHAM PRIEST

Introduction

Let L be the language of first order arithmetic; and let N be the set of sentences
of L true in the standard interpretation. It is well-known that N has many (in fact,
absolutely infinitely many) models other than the standard interpretation. All of
these models extend the standard interpretation in a certain sense, and have an
interesting common structure. !

What is less well-known is that research into the model theory of paraconsist-
ent logics has established that N has many (countably infinitely many) models of
which the standard interpretation is itself an extension, in a certain sense, and
which also have an interesting common structure. The models are finite, but also
verify all the truths of the standard model. It is not my aim to investigate the mod-
els of N here. Rather, I want to explore the consequences of their existence for
some issues in the philosophy of mathematics.?

1. Inconsistent Arithmetics

Let me start by spelling out the main technical result I will be appealing to, which
goes as follows. For each natural number, n, there is a set of sentences of L, N,,,
with the following properties: _
i) N,2 N, and so N, is complete (i.e., for every sentence ¢, N, contains
either @ or - ).
i1) N, is a theory in the paraconsistent logic LP.
iii) N, is inconsistent.
iv) If @is a (negated) equation concerning only numbers < n then peN,, iff
~ @eN. (Hence if n>0 N, is non-trivial.)
v) N, is decidable (and so axiomatisable).
vi) N, is representable in N,,, and hence L contains a truth predicate for N,,.

vii) If B is the proof predicate for N, then every instance of the scheme
B(<g>) = @pisinN,.

! See, e.g., Boolos and Jeffrey (1974), Ch. 17.

2 The first person to note that the models have important philosophical implications
was van Bendegem (1991). This paper draws somewhat different conclusions from his,
but is much indebted to it.
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viii) If @ is any non-theorem of N,, =B(<¢>) is provable in N,. Hence the
non-triviality of N, can be established in N, (by finitary means).

ix) The “Godel sentence” for N,, is (provable) in N,,, as is its negation.

A sketch of this result can be found in Appendix 1. For those who are curious, but
do not want to work through the technical details, let me indicate how the trick is
turned. N, is the set of sentences true in the LP model constructed as follows. The
domain of the model is just {m; m=n}. Arithmetically, all the numbers less than
n behave in the standard way, but n has any atomic or negated atomic property iff
some number = » has it.> Of course, » is an-inconsistent object (in fact, the least
inconsistent object) in the interpretation. In particular, in the model, n=n+1 is true
even though it is also false (I write the numeral for i as i). (i) is established by
appealing to a result known as the Collapsing Lemma. (ii), (iii) and (iv) are imme-
diate. (v) follows simply from the finitude of the interpretation. (vi) and (vii) and
(viii) follow from (v) and the fact that all decidable sets are definable in N, and
so in N,,.. (ix) requires a little more (but straightforward) computation.

2. The standard interpretation

Let us, henceforth, fix n as some incredibly large number, say a number larger
than the number of combinations of fundamental particles in the cosmos, larger
than any number that could be sensibly specified in a lifetime, so large that it has
no physical meaning or psychological reality. Let us call N,,, M. The central ques-
tion I want to ask in this essay concerns the theories N and M, and is simply:
which of these is correct, i.e., which of these is the complete set of truths of arith-
metic? Of course, N is the complete set of truths in one interpretation and M is
the complete set of truths in another. The question, therefore, is: what is the cor-
rect interpretation of the language L.?

The question might appear silly, since the answer is so obvious. Clearly, the
standard interpretation of L is the correct one. Hence, it is N that is true. The first
thing T want to do is to show that things are not this straightforward. The argu-
ment is, in fact, a well-known one, but with a small twist. Observe, first, that the
natural way to understand talk of the standard interpretation is platonistically: an
interpretation is an abstract structure, to parts of which the terms of the language
refer, and over which quantifiers range. If the notion is understood in some other
way (which may, indeed, be possible), it is not at all obvious what this is, and so
not obvious that the matter is simply settled.

Next, forget the inconsistent interpretations of L for a moment, and just recall
the multitude of consistent interpretations. Given that there is such a multitude,
what is it that determines that our language has any particular one of them as its

3 The specification of N, given here is parasitic on an understanding of the standard
interpretation. This feature is inessential, however. There are independent (though peda-
gogically more complex) specifications.
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unique interpretation? It is certainly nothing that we can assent to in L, for all the
interpretations are elementarily equivalent (make the same things true).*
Arguably, there is nothing.

This argument has, of course, been used by Hilary Putnam (1983), who applies
it much more generally. I have never been persuaded by the generalisation of the
argument to the interpretation of physicalistic language. In this case, it seems
only too obvious that there are things that select the correct interpretation other
than the set of statements endorsed. For example, there are independent factors
that fix the referents of the terms involved. Exactly what these are, one might
argue about; however, reference-fixing is not done by magic, and the most plau-
sible account of how reference is fixed seems likely to involve appeal to some
causal relation between the referent and the speaker.”> However good this reply is
for physical language, it is obviously not available for the language of arithmetic:
numbers are not causal agents.

As is well-known, Godel argued that we have a mental faculty of direct intui-
tion for numbers. I do not think that this metaphor ultimately has any cash value
(Priest 1987, p. 189), but let us grant it here. Could it be what determines refer-
ence? I do not think so. Any thesis to this effect would seem to fall foul of the
Private Language Argument in one form or another. If the fixing of reference is
performed solely by subjective mental acts, then there is nothing to prevent each
of us fixing reference in a quite different way, which is another way of saying that
qua public language, reference is not fixed at all. L is, after all, a public and
shared language; the criteria for reference-fixing must, therefore, equally be
public.

Perhaps there are other candidates for reference-fixing; however, I know of
none worth discussing. Let us, then, recall that in the present situation there are
possible interpretations other than the consistent ones. Does the existence of
these materially alter the situation? No; if anything, it strengthens the argument.
Putnam’s argument appeals, essentially, to the Lowenheim-Skolem Theorem.
The Collapsing Lemma that is used to construct the finite interpretations of arith-
metic is the ultimate downwards Lowenheim-Skolem Theorem: arithmetic has a
model of every cardinality. The argument from multiplicity to indeterminacy is
therefore reinforced.

It is true that N is not a complete description of the finite interpretation, in the
sense that there are things true in the interpretation that are not in N. But this does
not undercut the argument: it merely reinforces it. If this is not clear, just compare

4 Nor does it help to consider extensions of L, e.g., with set theoretic notions. There is
just the same multitude of models of, e.g., classical ZF with non-standard natural numbers.
This is no longer true if we interpret the set theoretic machinery as second order. Interest-
ingly, however, it is till true in the inconsistent case. The proof of this is a straightforward
extension of that given in Appendix 1.

5 Putnam, of course, replies to this move that it is “just more theory”. This reply seems
to me to fail: the point is that the causal relationship is there to determine; that we might
describe it in ways that themselves may be reinterpreted is beside the point. See, e.g. Lewis
(1984), p. 225.
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it with the classical situation: N is our best description for characterising the inter-
pretation of L; if that can’t do it then incomplete theories, such as the set of the-
orems of first order Peano Arithmetic, P, certainly can’t. From the perspective of
a finite interpretation, N is incomplete, just as P is, classically; but this fact has
no relevance. Of course, we might argue that we have reason to suppose that N is
complete in the pertinent sense. But this is a different argument, which we will
come to in due course. The point of the present section is merely to argue that
there is a substantial issue here; and the case for this seems made.

3. Practice, application and consistency

If appeal to abstract structures cannot settle the matter of the correct interpreta-
tion for L, what else can? Another candidate is our rule-following practices of
counting, adding, etc. Perhaps this can settle the matter.% Let us consider two peo-
ple, a and 3, whose practices support N and M respectively. How do the practices
of a and 3 differ? Both would count in the same way: 0,1,...n, n+1...; both would
add and multiply using the same rules; both would say, for any m, that m is dif-
ferent from 0, 1,...m-1, m+1,... But § would also say for any m = n, that m is inden-
tical to n, n+1,..., whilst a would not.

Surely, you and I are like a, not 3? Although one is intuitively inclined to say
“yes” to this, the answer is not so obvious once one starts to think about it. As
Wittgenstein demonstrated, any determinacy there is in the notion of rule-follow-
ing is to be grounded in the fact that we have dispositions to proceed in a socially
universal (or at least, pretty common) way.” Both o and f proceed in the same
way for all actual situations. The divergence between them could appear only in
situations that transcend anything humanly possible. What makes one think that
in such situations one would behave like o, rather than 3? Our knowledge of how
we would proceed in hypothetical situations is notoriously unreliable. Even
worse, it is not even clear that there is any fact of the matter here. What sense is
there in the notion of a human disposition to act in a situation that is humanly
impossible? (Kripke 1982, p. 26f.) Considerations such as this are apt to undercut
one’s (or at least my) initial inclination to say that I am like o, not 3.

Having put aside both the transcendental and human practice, there doesn’t
seem much left to guide a decision between N and M except the natures of N and
M themselves. What scope is there here? The disagreement between exponents
of N and M is not of the usual kind. Anything (at least anything in L) that the one
says, the other will agree with. All that the one can do is to mark disagreement
with what we might call the surplus content of the other’s views. For example, if
M is true, then there is a largest number (as may easily be checked). The one will

6 A similar suggestion is made by Wright (1985, p. 130), in the context of the classical
debate surrounding the Léwenheim-Skolem Theorem.

7 See, Philosophical Investigations, especially §§201-242. See also Kripke (1982, Ch.
3).
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deny this. But this hardly settles the matter: the other, who endorses M, will, of
course, agree that there is no largest number as well. If the one has a move at this
point, it would seem to be that the other is inconsistent. But what, in this context,
is wrong with this? A standard argument is to the effect that if arithmetic were
inconsistent, we would lose all control over it, since everything would follow. It
is precisely this view to which the existence of M gives the lie. And most of the
arguments for consistency—that I can think of, anyway—beg the question in a
similar way.

One non-question-begging argument appeals to the application of arithmetic.
If arithmetic were inconsistent then, surely, in applying it to build bridges, for
example, we could expect them to fall down—which they don’t.® Leaving aside
the fact that bridges do fall down sometimes, the argument carries little weight
here. The portion of arithmetic that is applied in engineering and other parts of
human life is largely computational; and not just computational: -the computa-
tions involve magnitudes that are physically meaningful. Now N and M agree on
all computational mathematics—at least up to n, and what happens beyond this
is, by choice of n, of no physical import.

4. Petersen’s Argument

I don’t pretend to have aired all the arguments in favour of N over M. I am sure
there are others. But the discussion so far will at least, I hope, have shown that
one ought to be open-minded enough to see what the other side of the case is like.
The first thing to note here is that there is a very simple reason to favour the unor-
thodox view. Using an argument due to Uwe Petersen (personal communication),
we can prove that there is a number, x such that x=x+1!° I will give an informal
version of the argument here; a formal version can be found in Appendix 2.
Let r be an abbreviation for the following description:
the least number such that this description refers to it (or 0 if it fails to
refer) + 1
Note that “z”” does refer to a number. For if “z” failed to refer, it would refer to
1. Hence we have:

7 = (the least x such that “z” refers to x) + 1 *)
Now, clearly, “s” refers to 7, and since reference is unique s is the least thing that
“m’ refers to. Hence, by (*), #=a+1, and so:

Fxx=x+1 (**)
What this argument shows is that, as a description of the arithmetic facts, N is
incomplete; but M, which contains (**), gets it right. The argument does not tell

8 This objection to inconsistency is put by Turing to Wittgenstein. See Diamond (1976,
p. 211).

9 Petersen obtained it by analysing the formulation of Berry’s paradox in Priest (1983).
(See also Priest (1987, 1.8).) I am sure that he would not approve of my use of it, however.
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us what the x in question is, in any particularly illuminating way. A fortiori, it
does not tell us that it is so large as to have no psychological or physical signifi-
cance in the appropriate sense (though the fact that we find it impossible to pro-
duce a candidate for x suggests at least the former). But-as an argument against
N, it is decisive.

It can also be used to answer another objection against M. We fixed » as a cer-
tain number but, for all we have said so far, any one of an infinite number of num-
bers could play this role. If it is M that is true, why is it not one of the other
theories N,, for such an m? The argument points to the arbitrariness of the chosen
n. All that is required to answer it, therefore, is to choose 7 in a non-arbitrary fash-
ion. This can now be done simply. The argument demonstrates that there is a
number equal to its own successor. Let n be the least such number. This is the
obvious bound for the consistent behaviour of numbers.

5. Truth and decidability

The orthodox-minded will, naturally, be suspicious of Petersen’s argument. It is,
of course, closely related to numerous paradoxes, and so it is natural to suppose
that some standard solution to such paradoxes will cope with it. I have argued
against such solutions at length elsewhere,!? and to take up the issue here seems
pointless, as well as taking us away from the main point of this paper. So let us -
leave these matters there.

Even if this argument be rejected, there is another—or better, family of oth-
ers—which, though perhaps less than conclusive, is still very weighty. The main
idea is simple. The Limitative Theorems of classical metamathematics!! are usu-
ally regarded as, at best, disappointing, at worst posing nasty philosophical prob-
lems. With the exception of the Lowenheim-Skolem Theorem—which has
already reared its head—paraconsistent arithmetic is free from all these Theo-
rems, and so problems. The fact that a theory solves problems that beset its rivals
is well recognised as speaking strongly in its favour.!? What follows elaborates
on this. |

Let us start with Church’s Theorem. The hope that we might have a decision
procedure to solve mathematical problems goes back, at least, to Leibniz. The
most ardent esperant this century was, of course, Hilbert (at one time). Hilbert
hoped that by formalising mathematics, and in particular arithmetic, we would be
able to establish a decision procedure for it. Church’s Theorem showed this to be
impossible. But by clause (v) of §1, if M is the correct arithmetic, there exists just
such a decision procedure (and a very simple—though exponential—one at that).

10 See especially, Priest (1987, Ch. 1). ,

'! For a survey, see Fraenkel et al (1973, p. 310ff).

'2 The point has been argued by Kuhn, Lakatos and, perhaps most comprehensively,
by Laudan (1977).
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This is not, strictly speaking, an argument for M, but it certainly makes M entic-
ing.

Let us move on to Tarski’s Theorem: classical arithmetic cannot contain its
own truth predicate. Perhaps there is nothing problematic about this if we just
regard it as establishing that arithmetic truth is a notion stronger than we might
have hoped. However, there is more to it than that. For the proof of Tarski’s The-
orem demonstrates that nothing satisfying the necessary conditions for a truth
- predicate (specifically, Tarski’s Convention T) can be incorporated into arithme-
tic. In other words, a single theory of truth and number is beyond our grasp. This
does seem puzzling. Why should these two notions be immiscible; and how can
they be immiscible since we mix them? The puzzle is resolved by M; by condi-
tion (vi) of §1, the language of M contains its own truth predicate.

Unsurprisingly, the issue of the solution to the semantic paradoxes, and espe-
cially the Liar Paradox, is raised here. The fact that we cannot have a unified
account of number and truth means that a Tarskian “metalinguistic” solution to
the paradoxes must ultimately be endorsed. This is highly problematic, as many
have noted. By contrast, M provides a clean and simple solution. Since I have dis-
cussed many of the issues involved elsewhere (Priest 1987, Ch. 1), I will not dis-
cuss them further here.

6. Godel’s Theorems

Let us now turn to Gddel’s incompleteness Theorems. These, of course, have
been held to have all kinds of problematic or unpalatable consequences. Notably,
then, Godel’s Theorems all fail for M. There is no space here to review all the
damaging implications that the Theorems have been supposed to have.!* So I will
just review a few of the more notable ones.

The simplest form of the first Theorem is that arithmetic is not axiomatic. (M
is, since decidability implies axiomatisability.) Since axiomatisability has been
the methodological cornerstone of mathematics since Euclid, this result came as
something of a blow. The hard problem posed by the result is not methodological,
however, but cognitive. We appear to obtain our grasp of arithmetic by learning
a set of basic and effective procedures for counting, adding, etc.; in other words,
by knowledge encoded in a decidable set of axioms. If this is right, then arithme-
tic truth would seem to be just what is determined by these procedures. It must
therefore be axiomatic. If it is not, the situation is very puzzling. The only real
alternative seems to be platonism, together with the possession of some kind of
sixth sense, “mathematical intuition”. I have argued against this elsewhere.!* All

13 And I certainly do not agree with all of them, for example, that the Theorems refute
a mechanist philosophy of mind. See Priest (1994).

14 See Priest (1987, 10.4.)
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that we need note here is that we have already seen in §2 that the Ldwenheim-
Skolem Theorem gives the lie to the claim that platonism can provide an account
of how we interpret (grasp the meaning) of arithmetic language. Hence, this alter-
native fails.!?

A stronger form of the first Theorem is to the effect that for any axiomatic
arithmetic of a certain kind, we can actually produce a statement of arithmetic
(the Godel sentence) that is not provable in the theory, yet which we can prove to
be true. How is it possible that our powers of proof can outrun any axiomatic sys-
tem? (The problem is similar to the first, except that it concerns proof, rather than
truth/meaning.) If M is correct, this problem, too, is avoided because of clause
(ix) of §1. .

I argued (1987, Ch.3) that the only reasonable conclusion that can be drawn
from this form of the Theorem is that our proof procedures are inconsistent. This
argument is confirmed if M is correct. By (ix) of §1, the Godel sentence of M is
provable in M, as is its negation. The theory is, therefore, inconsistent. We knew
that anyway, of course; but this is just the inconsistency one should expect if the
analysis cited is correct. ‘

Let us now turn to the second Theorem. This is to the effect that the sentence
that canonically asserts the consistency of any axiomatic arithmetic of a certain
kind cannot be proved in the system. Of course, M is inconsistent, so as far as M
goes, the question of a consistency proof does not arise. However, the parallel
question of non-triviality does arise. M is non-trivial (i.e., is not the totality of all
sentences of L) and this can be proved in M, as part (viii) of §1 tells us.'¢

The unprovability of the consistency (non-triviality) of arithmetic in arithme-
tic was certainly a negative result for many, in that it killed off Hilbert’s Pro-
gramme. Whether or not the present situation is a plus for M is therefore
connected with the question of the importance of the viability of that Programme.
Before I discuss this however, there is a related fact that is a definite plus for M.
A standard way of proving the second Theorem is via L&b’s Theorem. Let B be
the proof predicate for a theory. Then if

B(<g>)—¢ (**%)
is provable, @ is provable.!” It follows that if the theory is non-trivial, not all
instances of scheme (***) are provable in the theory, though they are true in the
standard model. This has struck many as odd. How is it that some truths as innoc-
uous as those that (***) expresses must fail to be provable? The situation is rec-
tified by M. As (vii) of §1 assures us, every instance of (***) is provable in M.

15> This may not refute platonism itself, but it certainly makes it vulnerable to an appli-
cation of Ockham’s Razor. _

i6 This is, in fact, one of the earliest results in investigations of finite models of arith-
metic. See Meyer (1976). ’

17 See Boolos and Jeffrey (1974, Ch. 16).
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7. Hilbert’s Programme

Let us, finally, turn to Hilbert’s Programme. The main ideas behind this were as
follows.'® The finitary part of mathematics (roughly, the computational part) has
a perfectly good procedural interpretation and needs no appeal to platonism to
make sense of it. Other arithmetic statements are to be considered as having only
an instrumental meaning. They are acceptable to the extent that, but only to the
extent that, they simplify and unify our operations with finitary sentences. A
guarantee of acceptability is to be provided by: (a) an axiomatisation of arithme-
~ tic (or more generally, mathematics), together with: (b) a proof of the fact that the
non-finitary axioms are conservative with respect to the finitary statements, that
is, that they cannot be used to prove non-finitary statements that are not directly
provable. In the context within which Hilbert was working, this is equivalent to
finding a consistency proof for the theory. And if the consistency proof is to have
any force it can not use the methods it is supposed to be justifying. Hence a proof
must use only finitary methods.

Godel’s Theorems were thought to have killed off both (a) and (b). M puts the
whole situation in a quite different light. First, M can be axiomatised. Secondly,
as (viii) of §1 tells us, any non-theorem of M can be shown in M to be a non-
theorem. In particular, any untrue (in the interpretation for M) finitary statement
can be shown not to be provable. Moreover, since M is decidable, the methods
used are strictly finitary.

So is Hilbert’s Programme vindicated? Maybe, maybe not. First, some true fin-
itary statements in M, and in particular, some equations, turn out to be inconsist-
ent (have true negations). Hilbert might not have been too happy about this,
though if M is true arithmetic, this unhappiness can legitimately be set aside.
More worrying is the fact that a non-triviality proof is not necessarily to be
accepted at face value. Since the system is inconsistent, the fact that ~B(<@>) is
provable does not prevent @ from being provable. But third, and conclusively, the
while point of the exercise was to justify non-finitary reasoning, i.e., reasoning
that goes beyond the computational. But M is decidable. Hence, if M is correct,
no correct reasoning goes beyond the finitary. From the perspective of M,
Hilbert’s Programme is not so much realised as rendered redundant!

However, we are still left with the thought that finitary arithmetic, i.e., now, all
of it, has a perfectly good procedural interpretation. There is therefore a perfectly
good account of how it is we grasp the meaning of arithmetical statements and
establish them as true. In many ways, this just summarises the central benefits of
M, as I have tried to bring them out in the preceding sections. In a nutshell, this
argument in favour of M is that it removes the mystification from mathematics.
Or, at least, arithmetic. To what extent the considerations of this paper extend to
the rest of mathematics is a topic for another occasion.

18 See Hilbert (1925).
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Appendix 1

In this appendix I will give the proofs of the facts cited in §1. This can be done
reasonably succinctly since many of the key results are already in the literature.
Let A=<D,I> be any first order interpretation. Let ~ be any equivalence relation
on D that is also a congruence relation with respect to the functions involved.
Define the LP interpretation,'® %~=<D",I"> to be called the collapsed interpreta-
tion, as follows. D™={[d]; deD}, where [d] is the equivalence class of d under ~.
For any constant, c, [7(c)=[I(c)]. For any n-place function symbol, f,
I"(H)(d,1,...[d,D=[I(f)(d,,...d,)]. For any n-place predicate, P (including, nota
bene, identity), its positive/negative extensions in U~ are respectively:
{<ay,...,a>; 3d,€a;...3d,€a, <d,...,d> is in the positive/negative exten-
sion of P in 9}

Collapsing Lemma
Ifg is true/false in ¥, @ is true/false in U~

Proof » .
The proof is by recursion over the structure of sentences. For details, see Priest

(1991, §7). The proof given there is for a language without function symbols. The
fact that ~ is a congruence relation is sufficient to ensure that for any term, t,
I"(t)=[I(t)]. The extension of the proof to languages with function symbols is then
obvious. 0O
Now let U be the standard model of arithmetic; let ~ be the equivalence relation
that puts every number < x into its own equivalence class, and every number # n
into a single equivalence class. Let N, be the set of sentences true in Y~.2°
The Collapsing Lemma gives (i). (ii) is immediate. For (iii), consider the sen-
tence n=n+1. This is true in the collapsed model, as may easily be checked; but
its negation is also true by the Collapsing Lemma. Since we have done nothing
to affect the denotations of numerals whose denotations are less than n (except
lift their type), it is easy to check (iv).
It is also easy to check that for any formula, ¢, the following are true in the
collapsed model:
dxp <> ((x/0)v...vp(x/n))
Vxp < (¢(x/0)A...A@(x/n))
and hence, using a recursive procedure, that any formula, ¢, is equivalent in the
collapsed model to one without quantifiers, ¢*. This will give us (v):

Decidability
N, is decidable.

!2 For a definition of LP interpretations, see Priest (1987, Ch. 5). Crucially, in such in-
terpretations, all predicates have positive and negative extensions which may overlap; and
sentences take one of the truth values {1}, {0}, {0,1}.

20 This is not quite the way I defined N,, in §1. The interpretation given there is, essen-
tially, that obtained (in a standard fashion) by choosing the least member of each equiva-
lence class to do duty for it.
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Proof
The following is a suitable decision procedure. To test ¢, it is sufficient to test g*.
We do this by assigning to each equation, t,=t, the value v, where:

lev iff I(t;) = I(tp) or both are + »n
Oev iff I(t;) = I(t,) or both are $ n
(This is the truth value of the equation in the collapsed model.) The formula ¢*
is then tested by using LP truth tables. O
A similar proof of decidability is to be found in §3 of Meyer and Mortensen
(1984), for a different class of finite models of arithmetic.
As is well-known, every decidable set (of formulae) is representable in arith-
metic, i.e., if X is a decidable set (of formulae), there is a formula, @, of one free
variable such that:

if aeX then g<a>) € N

if ag¢X then —~@p<o>) e N
(where <o> is the numeral of the code of o). By the Collapsing Lemma every
decidable set is represented by the same formula in every collapsed model. Since
N, is decidable, it is represented by some formula B(x). This will give us (vi):

The T-Schema
Every instance of B(<a>) <> a is true in the collapsed model.

Proof

Either aisin N, or it is not. If it is, B(<a>) is true in the collapsed model, as there-
fore is the equivalence. If it is not, its negation is true in the collapsed model, as
is -B(<a>); whence, again, the equivalence is true. [

Warning: note that for an arbitrary B that defines N,, in the collapsed model,
there is no reason to suppose that it satisfies the stronger identity condition:

o and B(<o>) have the same truth value in the collapsed model.
However, it is easy enough to construct a theory in an extended language, which
contains N,, and which does have a truth predicate in this sense. (The details are
as in Dowden (1984).)

To formulate the sentences involved in the other results we need a proof pred-
icate for N,,. The simplest thing to do is to take the predicate B that defines N,, in
N,,. (vii) and (viii) are given to us straight away. (For (viii) the decision procedure
will give us a proof of ~B(<¢>), and decision procedures are certainly finitary.)
For (ix), standard techniques allow us to construct a Godel sentence, v, itself of
the form -B(<y>). If y is provable, all well and good. If it is not, =B(<ys>) is
provable so y is provable anyway.

Alternatively, we could take a B satisfying the identity condition. For such a
B, if @ is not provable, B<g> is not provable, and so its negation is. This suffices
for the other results.
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Appendix 2

In this appendix, I will give a formalisation of Petersen’s argument, used in §4.
The argument is carried out in the language of arithmetic, augmented by a least
number operator, u, and a two-place denotation predicate, A. Given a formula of
one free variable, x, ¢, “uxg” refers to the least number satisfying g, if there is
one, or 0 otherwise. It therefore satisfies the following description principle:
Ixp — @lx/puxg)
A satisfies the following two conditions:
A(<t>.0) (Al)
A(x,y) AA(x,2) >y =2 (A2)
where ¢ is any closed term. Between them, Al and A2 say that <¢> refers to ¢ and
only ¢. (This is reasonable since, as u is defined, all terms denote.)

For the proof, we need to have an appropriate way of representing self-refer-
ence. This is done with a version of Godel’s fixed point lemma. We will assume
that every one-place primitive recursive function is represented by a term of the
language—in fact, just diagonalisation will suffice. (This is not essential, but sim-
plifies the proof.) The lemma is as follows:

Lemma
For any term with one free variable, 7(x), there is a term, g, such that we can
prove:

o=7<0>)
Proof
If ¢ is any term, let its diagonalisation be the term obtained by substituting <z> for
each free variable in ¢. By assumption, there is a term, d(x), that represents diag-
onalisation, i.e., if s is the diagonalisation of ¢ then we can prove that §(<t>)=<s>.
Now consider ©(d(x)). Suppose this has code m. Then its diagonalisation is
7(6(m)). Suppose that this had code n. Then since 6 represents diagonalisation,
we can prove:

6(m)=n
And hence v

7(6(m))=7(n)
Taking oto be t(6(m)) gives the result. [

The formalisation of Petersen’s argument is now simple. Consider the term

uxA(y.x)+1. By the diagonal lemma we can find a term, s such that:

T=pxA(<m>x)+1 (D
Al gives us:
A(<m>, 7) )
Hence, 3xA(<m>,x). By the description principle:
A(<m>, uxA(<m>,x)) 3)
But then by (2), (3) and A2:
T=pxA(<mT>,x)

So by (1), #=m+1; and hence, xx=x+1.
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